References
Ali, M. M., Boylan, J. E., and Syntetos, A. A. (2012). Forecast errors and inventory performance under forecast information sharing. International Journal of Forecasting, 28(4), 830–841.
Anderson, E. T., Fitzsimons, G. J., and Simester, D. (2006). Measuring and mitigating the costs of stockouts. Management Science, 52(11), 1751–1763.
Andy T. (2016). Is it unusual for the MEAN to outperform ARIMA? Cross Validated.
Angrist, J. D., and Pischke, J.-S. (2009). Mostly harmless econometrics. Princeton University Press.
Armstrong, J. S. (2001). Combining forecasts. In J. S. Armstrong, editor, Principles of Forecasting – A Handbook for Researchers and Practitioners, pages 1–19. Kluwer.
Arnold, J. B. (2021). Ggthemes: Extra themes, scales and geoms for ’ggplot2’. R package version 4.2.4.
Athanasopoulos, G., Hyndman, R. J., Kourentzes, N., and Petropoulos, F. (2017). Forecasting with temporal hierarchies. European Journal of Operational Research, 262(1), 60–74.
Athanasopoulos, G., Hyndman, R. J., Song, H., and Wu, D. C. (2011). The tourism forecasting competition. International Journal of Forecasting, 27(3), 822–844.
Bandara, K., Hyndman, R. J., and Bergmeir, C. (2021). MSTL: A Seasonal-Trend Decomposition Algorithm for Time Series with Multiple Seasonal Patterns.
Batchelor, R. (2010). Worst-case scenarios in forecasting: How bad can things get? Foresight: The International Journal of Applied Forecasting, 18, 27–32.
Benesty, J., Chen, J., Huang, Y., and Cohen, I. (2009). Pearson correlation coefficient, 1–4.
Berry, T. (2010). Sales and market forecasting for entrepreneurs. Business Expert Press.
Biais, B., and Weber, M. (2009). Hindsight bias, risk perception, and investment performance. Management Science, 55(6), 1018–1029.
Boulaksil, Y., and Franses, P. H. (2009). Experts’ stated behavior. Interfaces, 39(2), 168–171.
Boylan, J. E., and Babai, M. Z. (2016). On the performance of overlapping and non-overlapping temporal demand aggregation approaches. International Journal of Production Economics, 181, Part A, 136–144.
Boylan, J. E., and Syntetos, A. A. (2006). Accuracy and accuracy-implication metrics for intermittent demand. Foresight: The International Journal of Applied Forecasting, 4, 39–42.
Boylan, J. E., and Syntetos, A. A. (2021). Intermittent Demand Forecasting: Context, Methods and Applications. Wiley.
Brau, R., Aloysius, J., and Siemsen, E. (2023). Demand planning for the digital supply chain: How to integrate human judgment and predictive analytics. Journal of Operations Management.
Chatfield, C. (2001). Prediction intervals for time-series forecasting. In J. S. Armstrong, editor, Principles of Forecasting – A Handbook for Researchers and Practitioners, pages 475–494. Kluwer.
Chatfield, C. (2007). Confessions of a pragmatic forecaster. Foresight: The International Journal of Applied Forecasting, 6, 3–9.
Chatfield, C., Koehler, A. B., Ord, J. K., and Snyder, R. D. (2001). A new look at models for exponential smoothing. Journal of the Royal Statistical Society: Series D (The Statistican), 50(2), 147–159.
Choi, H., and Varian, H. (2012). Predicting the present with Google Trends. Economic Record, 88(s1), 2–9.
Claeskens, G., Magnus, J. R., Vasnev, A. L., and Wang, W. (2016). The forecast combination puzzle: A simple theoretical explanation. International Journal of Forecasting, 32(3), 754–762.
Clarke, S. (2006). Managing the introduction of a structured forecast process: Transformation lessons from Coca-Cola Enterprises Inc. Foresight: The International Journal of Applied Forecasting, 4, 21–25.
Clemen, R. T. (1989). Combining forecasts: A review and annotated bibliography. International Journal of Forecasting, 5(4), 559–583.
Cleveland, R. B., Cleveland, W. S., McRae, J. E., and Terpenning, I. (1990). STL: A seasonal-trend decomposition. Journal of Official Statistics, 6(1), 3–73.
Corsten, D., and Gruen, T. (2004). Stock-outs cause walkouts. Harvard Business Review, 26–28.
Croston, J. D. (1972). Forecasting and stock control for intermittent demands. Operational Research Quarterly, 23(3), 289–303.
D’Aveni, R. (2015). The 3-d printing revolution. Harvard Business Review, 93(5), 40–48.
De Livera, A. M., Hyndman, R. J., and Snyder, R. D. (2011). Forecasting time series with complex seasonal patterns using exponential smoothing. Journal of the American Statistical Association, 106(496), 1513–1527.
Dietvorst, B. J., Simmons, J. P., and Massey, C. (2015). Algorithm aversion: People erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology: General, 144(1), 114–126.
Engle, R. F. (2001). GARCH 101 : The use of ARCH/GARCH models in applied econometrics. Journal of Economic Perspectives, 15(4), 157–168.
Facebook’s Core Data Science Team. (2022). Prophet: Forecasting at Scale. Python package version 1.1.1.
Fahimnia, B., Arvan, M., Tan, T., and Siemsen, E. (2022). A hidden anchor: The influence of service levels on demand forecasts. Journal of Operations Management.
Federico Garza, C. C., Max Mergenthaler Canseco. (2022). StatsForecast: Lightning fast forecasting with statistical and econometric models. PyCon Salt Lake City, Utah, US 2022.
Fildes, R., Goodwin, P., Lawrence, M., and Nikolopoulos, K. (2009). Effective forecasting and judgmental adjustments: An empirical evaluation and strategies for improvement in supply-chain planning. International Journal of Forecasting, 25(1), 3–23.
Fildes, R., Kolassa, S., and Ma, S. (2022). Post-script – Retail forecasting: Research and practice. International Journal of Forecasting, 38(4), 1319–1324.
Fildes, R., Ma, S., and Kolassa, S. (2022). Retail forecasting: Research and practice. International Journal of Forecasting, 38(4), 1283–1318.
Fildes, R., and Petropoulos, F. (2015). Improving forecast quality in practice. Foresight: The International Journal of Applied Forecasting, 36, 5–12.
Fisher, A., Rudin, C., and Dominici, F. (2019). All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously. Journal of Machine Learning Research, 20, 1–81.
Fotios Petropoulos, Yael Grushka-Cockayne, Enno Siemsen, and Spiliotis, E. (2023). Wielding Occam’s Razor: Fast and Frugal Retail Forecasting. Working Paper.
Franses, P. H. (2016). A note on the Mean Absolute Scaled Error. International Journal of Forecasting, 32(1), 20–22.
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189–1232.
Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367–378.
Gardner, E. S., Jr. (2006). Exponential smoothing: The state of the art – part II. International Journal of Forecasting, 22(4), 637–666.
Gardner, E. S., Jr., and Mckenzie, Ed. (1985). Forecasting trends in time series. Management Science, 31(10), 1237–1246.
Gelper, S., Fried, R., and Croux, C. (2009). Robust forecasting with exponential and Holt-Winters smoothing. Journal of Forecasting, 285–300.
Géron, A. (2019). Hands-on machine learning with scikit-learn, keras, and TensorFlow. O’Reilly UK Ltd.
Gilliland, M. (2010). The Business Forecasting Deal. Hoboken, NJ: John Wiley & Sons.
Gilliland, M. (2013). FVA: A reality check on forecasting practices. Foresight: The International Journal of Applied Forecasting, 29, 14–18.
Gilliland, M., Tashman, L., and Sglavo, U. (Eds.). (2015). Business forecasting: Practical problems and solutions. Wiley.
Gilliland, M., Tashman, L., and Sglavo, U. (Eds.). (2021). Business Forecasting: The Emerging Role of Artificial Intelligence and Machine Learning. Hoboken, NJ: Wiley.
Godahewa, R., Bergmeir, C., Webb, G. I., Hyndman, R. J., and Montero-Manso, P. (2021). Monash time series forecasting archive. In Neural information processing systems track on datasets and benchmarks.
Goodwin, P. (2000). Correct or combine? Mechanically integrating judgmental forecasts with statistical methods. International Journal of Forecasting, 16(2), 261–275.
Goodwin, P. (2017). Forewarned – a sceptic’s guide to prediction. Biteback Publishing.
Goodwin, P. (2023). Should we always use forecasts when facing the future? Foresight: The International Journal of Applied Forecasting, 69, 20–22.
Goodwin, P., and Lawton, R. (1999). On the asymmetry of the symmetric MAPE. International Journal of Forecasting, 15(4), 405–408.
Gould, P. G., Koehler, A. B., Ord, J. K., Snyder, R. D., Hyndman, R. J., and Vahid-Araghi, F. (2008). Forecasting time series with multiple seasonal patterns. European Journal of Operational Research, 191(1), 207–222.
Green, K., and Tashman, L. (2008). Should we define forecast error as \(e = F - A\) or \(e = A - F\)? Foresight: The International Journal of Applied Forecasting, 10, 38–40.
Green, K., and Tashman, L. (2009). Percentage error: What denominator. Foresight: The International Journal of Applied Forecasting, 12, 36–40.
Hanley, J. A., Joseph, L., Platt, R. W., Chung, M. K., and Belisle, P. (2001). Visualizing the median as the minimum-deviation location. The American Statistician, 55(2), 150–152.
Haran, U., Moore, D. A., and Morewedge, C. K. (2010). A simple remedy for overprecision in judgment. Judgment and Decision Making, 5(7), 467–476.
Harrell, F. E., Jr. (2015). Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis. Springer.
Harvey, N. (1995). Why are judgments less consistent in less predictable task situations? Organizational Behavior and Human Decision Processes, 63(3), 247–263.
Harvey, N., Ewart, T., and West, R. (1997). Effects of data noise on statistical judgement. Thinking & Reasoning, 3(2), 111–132.
Hastie, T. J., and Tibshirani, R. J. (1990). Generalized additive models,Vol. 43. CRC Press.
Hewamalage, H., Ackermann, K., and Bergmeir, C. (2022). Forecast evaluation for data scientists: Common pitfalls and best practices. Data Mining and Knowledge Discovery.
Hill, A. V., Zhang, W., and Burch, G. F. (2015). Forecasting the forecastability quotient for inventory management. International Journal of Forecasting, 31(3), 651–663.
Hoover, J. (2006). Measuring forecast accuracy: Omissions in today’s forecasting engines and demand-planning software. Foresight: The International Journal of Applied Forecasting, 4, 32–35.
Hyndman, R. J. (2006). Another look at forecast-accuracy metrics for intermittent demand. Foresight: The International Journal of Applied Forecasting, 4, 43–46.
Hyndman, R. J. (2018). Mcomp: Data from the M-Competitions. R package version 2.8.
Hyndman, R. J. (2020). fpp2: Data for “Forecasting: Principles and Practice” (2nd Edition). R package version 2.4.
Hyndman, R. J. (2021). Forecasting impact.
Hyndman, R. J. (2023). fpp3: Data for “Forecasting: Principles and Practice” (3rd Edition). R package version 0.5.
Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G., and Shang, H. L. (2011). Optimal combination forecasts for hierarchical time series. Computational Statistics & Data Analysis, 55(9), 2579–2589.
Hyndman, R. J., and Athanasopoulos, G. (2014). Optimally reconciling forecasts in a hierarchy. Foresight: The International Journal of Applied Forecasting, 35(42-48).
Hyndman, R. J., and Athanasopoulos, G. (2021). Forecasting: Principles and practice. Melbourne, Australia: OTexts.
Hyndman, R. J., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O’Hara-Wild, M., … Yasmeen, F. (2023). forecast: Forecasting functions for time series and linear models. R package version 8.21.
Hyndman, R. J., and Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688.
Hyndman, R. J., Koehler, A. B., Ord, J. K., and Snyder, R. D. (2008). Forecasting with exponential smoothing: The state space approach. New York, NY: Springer.
Hyndman, R. J., and Kostenko, A. V. (2007). Minimum sample size requirements for seasonal forecasting models. Foresight: The International Journal of Applied Forecasting, (6), 12–15.
Hyndman, R. J., and Kourentzes, N. (2018). thief: Temporal HIErarchical Forecasting. R package version 0.3.
Hyndman, R. J., Lee, A. J., and Wang, E. (2016). Fast computation of reconciled forecasts for hierarchical and grouped time series. Computational Statistics & Data Analysis, 97, 16–32.
Hyndman, R. J., Lee, A., Wang, E., and Wickramasuriya, S. (2021). hts: Hierarchical and Grouped Time Series. R package version 6.0.2.
Hyndman, R. J., and Yang, Y. (2023). tsdl: Time Series Data Library. R package version 0.1.0.
Ibrahim, R., Ye, H., L’Ecuyer, P., and Shen, H. (2016). Modeling and forecasting call center arrivals: A literature survey and a case study. International Journal of Forecasting, 32(3), 865–874.
James, G., Witten, D., Hastie, T., and Tibshirani, R. (2021). An introduction to statistical learning,Vol. 112, pages 33–37. Springer.
Januschowski, T., Gasthaus, J., Wang, Y., Salinas, D., Flunkert, V., Bohlke-Schneider, M., and Callot, L. (2020). Criteria for classifying forecasting methods (invited commentary on the M4 forecasting competition). International Journal of Forecasting, 36(1), 167–177.
Januschowski, T., Kolassa, S., Lorenz, M., and Schwarz, C. (2013). Forecasting with in-memory technology. Foresight: The International Journal of Applied Forecasting, 31, 14–20.
Januschowski, T., Wang, Y., Torkkola, K., Erkkilä, T., Hasson, H., and Gasthaus, J. (2022). Forecasting with trees. International Journal of Forecasting, 38(4), 1473–1481.
Kaggle. (2023). Advertising sales dataset. Kaggle website.
Kahneman, D. (2012). Thinking: Fast and slow. Penguin.
Kahneman, D., Lovallo, D., and Sibony, O. (2011). Before you make that big decision. Harvard Business Review, 89(6), 51–60.
Kang, Y., Hyndman, R. J., and Smith-Miles, K. (2017). Visualising forecasting algorithm performance using time series instance spaces. International Journal of Forecasting, 33(2), 345–358.
Kolassa, S. (2008). Can we obtain valid benchmarks from published surveys of forecast accuracy? Foresight: The International Journal of Applied Forecasting, (11), 6–14.
Kolassa, S. (2014). Data science without knowledge of a specific topic, is it worth pursuing as a career? DataScience.StackExchange.
Kolassa, S. (2016a). Evaluating predictive count data distributions in retail sales forecasting. International Journal of Forecasting, 32(3), 788–803.
Kolassa, S. (2016b). Sometimes it’s better to be simple than correct. Foresight: The International Journal of Applied Forecasting, 40, 20–26.
Kolassa, S. (2017). What are the shortcomings of the mean absolute percentage error (MAPE)? Cross Validated.
Kolassa, S. (2020). Will Deep and Machine Learning solve our forecasting problems? Foresight: The International Journal of Applied Forecasting, 57, 13–18.
Kolassa, S. (2022a). Commentary on the M5 forecasting competition. International Journal of Forecasting, 38(4), 1562–1568.
Kolassa, S. (2022b). Do we want coherent hierarchical forecasts, or minimal MAPEs or MAEs? (We won’t get both!). International Journal of Forecasting.
Kolassa, S. (2022c). Selecting ARIMA orders by ACF/PACF vs. By information criteria. Cross Validated.
Kolassa, S. (2023a). How we deal with zero actuals has a huge impact on the MAPE and optimal forecasts. Foresight: The International Journal of Applied Forecasting, 69, 13–16.
Kolassa, S. (2023b). Minitutorial: The Pinball Loss for Quantile Forecasts. Foresight: The International Journal of Applied Forecasting, (68), 66–67.
Kolassa, S., and Hyndman, R. J. (2010). Free open-source forecasting using R. Foresight: The International Journal of Applied Forecasting, 17, 19–24.
Kolassa, S., and Martin, R. (2011). Percentage errors can ruin your day (and rolling the dice shows how). Foresight: The International Journal of Applied Forecasting, 23, 21–29.
Kolassa, S., and Schütz, W. (2007). Advantages of the MAD/Mean ratio over the MAPE. Foresight: The International Journal of Applied Forecasting, 6, 40–43.
Kolassa, S., and Siemsen, E. (2016). Demand forecasting for managers. New York, NY: Business Expert Press.
Kourentzes, N., Barrow, D., and Petropoulos, F. (2019). Another look at forecast selection and combination: Evidence from forecast pooling. International Journal of Production Economics, 209, 226–235.
Kourentzes, N., and Petropoulos, F. (2016). Forecasting with multivariate temporal aggregation: The case of promotional modelling. International Journal of Production Economics, 181, Part A, 145–153.
Kourentzes, N., and Petropoulos, F. (2022). MAPA: Multiple Aggregation Prediction Algorithm. R package version 2.0.5.
Kourentzes, N., Petropoulos, F., and Trapero, J. R. (2014). Improving forecasting by estimating time series structural components across multiple frequencies. International Journal of Forecasting, 30(2), 291–302.
Kremer, M., Moritz, B., and Siemsen, E. (2011). Demand forecasting behavior: System neglect and change detection. Management Science, 57(10), 1827–1843.
Kremer, M., Siemsen, E., and Thomas, D. J. (2016). The sum and its parts: Judgmental hierarchical forecasting. Management Science, 62(9), 2745–2764.
Kreye, M. E., Goh, Y. M., Newnes, L. B., and Goodwin, P. (2012). Approaches to displaying information to assist decisions under uncertainty. Omega, 40(6), 682–692.
Lapide, L. (2014). S&OP : The process revisited. Journal of Business Forecasting, 34(3), 12–16.
Larrick, R. P., and Soll, J. B. (2006). Intuitions about combining opinions: Misappreciation of the averaging principle. Management Science, 52(1), 111–127.
Lawrence, M., Goodwin, P., and Fildes, R. (2002). Influence of user participation on DSS use and decision accuracy. Omega, 30(5), 381–392.
Lawrence, M., and Makridakis, S. (1989). Factors affecting judgmental forecasts and confidence intervals. Organizational Behavior and Human Decision Processes, 43(2), 172–187.
Lawrence, M., O’Connor, M., and Edmundson, B. (2000). A field study of sales forecasting accuracy and processes. European Journal of Operational Research, 122, 151–160.
Löning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines, J., and Király, F. J. (2019). Sktime: A unified interface for machine learning with time series. arXiv Preprint arXiv:1909.07872.
Makridakis, S. (1993). Accuracy measures: Theoretical and practical concerns. International Journal of Forecasting, 9(4), 527–529.
Makridakis, S., Chatfield, C., Hibon, M., Lawrence, M., Mills, T., Ord, K., and Simmons, L. F. (1993). The M2-competition: A real-time judgmentally based forecasting study. International Journal of Forecasting, 9(1), 5–23.
Makridakis, S., and Hibon, M. (2000). The M3-competition: Results, conclusions and implications. International Journal of Forecasting, 16(4), 451–476.
Makridakis, S., Petropoulos, F., and Spiliotis, E. (2022). The M5 competition: conclusions. International Journal of Forecasting.
Makridakis, S., Spiliotis, E., and Assimakopoulos, V. (2022). M5 accuracy competition: Results, findings, and conclusions. International Journal of Forecasting, 38(4), 1346–1364.
Makridakis, S., Spiliotis, E., Assimakopoulos, V., Chen, Z., Gaba, A., Tsetlin, I., and Winkler, R. L. (2022). The M5 uncertainty competition: Results, findings and conclusions. International Journal of Forecasting, 38(4), 1365–1385.
Mannes, A. E., and Moore, D. A. (2013). A behavioral demonstration of overconfidence in judgment. Psychological Science, 24(7), 1190–1197.
Matejka, J., and Fitzmaurice, G. (2017). Same stats, different graphs: Generating datasets with varied appearance and identical statistics through simulated annealing. In Proceedings of the 2017 CHI conference on human factors in computing systems, pages 1290–1294.
Matthews, R. (2000). Storks deliver babies (\(p= 0.008\)). Teaching Statistics, 22(2), 36–38.
McCarthy, T. M., Davis, D. F., Golicic, S. L., and Mentzer, J. T. (2006). The evolution of sales forecasting management: A 20-year longitudinal study of forecasting practices. Journal of Forecasting, 25(5), 303–324.
Mélard, G. (2014). On the accuracy of statistical procedures in Microsoft Excel 2010. Computational Statistics, 29(5), 1095–1128.
Mello, J. (2009). The impact of sales forecast game playing on supply chains. Foresight: The International Journal of Applied Forecasting, 13, 13–22.
Miller, D., and Williams, D. (2003). Shrinkage estimators of time series seasonal factors and their effect on forecasting accuracy. International Journal of Forecasting, 19, 669–684.
Mohammadi, H. (2022). croston: croston model for intermittent time series. Python package version 0.1.2.4.
Mohammadipour, M., Boylan, J. E., and Syntetos, A. A. (2012). The application of product-group seasonal indexes to individual products. Foresight: The International Journal of Applied Forecasting, 26, 18–24.
Moritz, B., Siemsen, E., and Kremer, M. (2014). Judgmental forecasting: Cognitive reflection and decision speed. Production and Operations Management, 23(7), 1146–1160.
Morlidge, S. (2014a). Do forecasting methods reduce avoidable error? Evidence from forecasting competitions. Foresight: The International Journal of Applied Forecasting, 32, 34–39.
Morlidge, S. (2014b). Forecast quality in the supply chain. Foresight: The International Journal of Applied Forecasting, 33, 26–31.
Morlidge, S. (2015). Measuring the quality of intermittent demand forecasts: It’s worse than we’ve thought! Foresight: The International Journal of Applied Forecasting, 37, 37–42.
Nahmias, S. (1994). Demand estimation in lost sales inventory systems. Naval Research Logistics (NRL), 41(6), 739–757.
Nahmias, S., and Olsen, T. L. (2015). Production and operations analysis. Waveland Press.
Nikolopoulos, K., Syntetos, A. A., Boylan, J. E., Petropoulos, F., and Assimakopoulos, V. (2011). An aggregate–disaggregate intermittent demand approach (ADIDA) to forecasting: An empirical proposition and analysis. Journal of the Operational Research Society, 62(3), 544–554.
O’Hara-Wild, M., Hyndman, R. J., and Wang, E. (2022). feasts: Feature Extraction and Statistics for Time Series. R package version 0.3.0.
O’Hara-Wild, M., Hyndman, R. J., Wang, E., and Caceres, G. (2020). fable: Forecasting models for tidy time series. R package version 0.2.1.
Oliva, R., and Watson, N. (2009). Managing functional biases in organizational forecasts: A case study of consensus forecasting in supply chain planning. Production and Operations Management, 18(2), 138–151.
Önkal, D., Goodwin, P., Thomson, M., Gönül, S., and Pollock, A. (2009). The relative influence of advice from human experts and statistical methods on forecast adjustments. Journal of Behavioral Decision Making, 22(4), 390–409.
Ord, K., Fildes, R., and Kourentzes, N. (2017). Principles of business forecasting. Wessex Press.
Panagiotelis, A., Gamakumara, P., Athanasopoulos, G., and Hyndman, R. J. (2023). Probabilistic forecast reconciliation: Properties, evaluation and score optimisation. European Journal of Operational Research, 306(2), 693–706.
Pearl, J., and Mackenzie, D. (2018). The book of why: The new science of cause and effect. Basic Books.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
Perktold, J., Seabold, S., Taylor, J., and statsmodels-developers. (2022). Statsmodels: Statistical models, hypothesis tests, and data exploration. Python package version 0.13.5.
Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Taieb, S. B., … others. (2022). Forecasting: Theory and practice. International Journal of Forecasting, 38(3), 705–871.
Petropoulos, F., Grushka-Cockayne, Y., Siemsen, E., and Spiliotis, E. (2022). Wielding occam’s razor: Fast and frugal retail forecasting (Working Paper).
Qin, Y., Wang, R., Vakharia, A. J., Chen, Y., and Seref, M. M. H. (2011). The newsvendor problem: Review and directions for future research. European Journal of Operational Research, 213(2), 361–374.
R Core Team. (2022). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Raiffa, H. (1968). Decision analysis. Reading, MA: Addison-Wesley.
Richardson, R. (2011). Business applications of multiple regression. New York, NY: Business Expert Press.
Rickwalder, D. (2006). Forecasting weekly effects of recurring irregular occurrences. Foresight: The International Journal of Applied Forecasting, 4, 16–18.
Robette, J. (2023). Does improved forecast accuracy translate to business value? Foresight: The International Journal of Applied Forecasting, 68, 12–19.
Robinson, L. A. (2006). Trust your gut: How the power of intuition can grow your business. Chicago, IL: Kaplan Publishing.
Rostami-Tabar, B., Babai, M. Z., and Syntetos, A. A. (2022). To aggregate or not to aggregate: Forecasting of finite autocorrelated demand. Journal of the Operational Research Society.
Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski, T. (2020). DeepAR: Probabilistic forecasting with autoregressive recurrent networks. International Journal of Forecasting, 36(3), 1181–1191.
Satchell, S. E., and Hwang, S. (2016). Tracking error: Ex ante versus ex post measures, 54–62.
Schaer, O., Svetunkov, I., Yusupova, A., and Fildes, R. (2022, September). Survey: Forecasting software trends in a challenging world. Institute for Operations Research; the Management Sciences (INFORMS).
Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197–227.
Schauberger, P., and Walker, A. (2022). Openxlsx: Read, write and edit xlsx files. R package version 4.2.5.1.
Scheele, L. M., Thonemann, U. W., and Slikker, M. (2017). Designing incentive systems for truthful forecast information sharing within a firm. Management Science, 64(8), 3690–3713.
Schmidt, T., and Vosen, S. (2013). Forecasting consumer purchases using Google Trends. Foresight: The International Journal of Applied Forecasting, 30, 38–41.
Schubert, S. (2012). Forecastability: A new method for benchmarking and driving improvement. Foresight: The International Journal of Applied Forecasting, 26, 5–13.
scikit-learn core developers. (2023). scikit-learn: Machine Learning in Python. Python package version 1.2.1.
Seaman, B., and Bowman, J. (2022). Applicability of the M5 to forecasting at Walmart. International Journal of Forecasting, 38(4), 1468–1472.
Seifert, M., Siemsen, E., Hadida, A. L., and Eisingerich, A. B. (2015). Effective judgmental forecasting in the context of fashion products. Journal of Operations Management, 36, 33–45.
Shmueli, G. (2016). Practical time series forecasting: A hands-on guide. Axelrod Schnall.
Shmueli, G., and Lichtendahl, K. C. (2018). Practical time series forecasting with R: A hands-on guide. Axelrod Schnall.
Silver, E. A., Pyke, D. F., and Thomas, D. J. (2017). Inventory and production management in supply chains. CRC Press.
Singh, S. (2013). Supply chain forecasting & planning: Move on from Microsoft Excel? Foresight: The International Journal of Applied Forecasting, 31, 6–13.
Slowikowski, K. (2023). Ggrepel: Automatically position non-overlapping text labels with ’ggplot2’. R package version 0.9.3.
Smith, J. (2009). The alignment of people, process, and tools. Foresight: The International Journal of Applied Forecasting, 15, 13–18.
Smith, T. G.others. (2022). pmdarima: ARIMA estimators for Python. Python package version 2.0.2.
Soyer, E., and Hogarth, R. M. (2012). The illusion of predictability: How regression statistics mislead experts. International Journal of Forecasting, 28(3), 695–711.
Spiegel, A. (2014). So you think you’re smarter than a CIA agent.
Spiliotis, E. (2022). Decision Trees for Time-Series Forecasting. Foresight: The International Journal of Applied Forecasting, 64, 30–44.
Stoffer, D., and Poison, N. (2023). astsa: Applied Statistical Time Series Analysis. R package version 2.0.
Surowiecki, J. (2004). The wisdom of crowds. New York, NY: Anchor.
Svetunkov, I. (2023). smooth: Forecasting Using State Space Models. R package version 3.2.0.
Svetunkov, I., and Boylan, J. E. (2020). State-space ARIMA for supply-chain forecasting. International Journal of Production Research, 58(3), 818–827.
Syntetos, A. A., Babai, M. Z., Boylan, J. E., Kolassa, S., and Nikolopoulos, K. (2016). Supply chain forecasting: Theory, practice, their gap and the future. European Journal of Operational Research, 252(1), 1–26.
Syntetos, A. A., Babai, M. Z., and Gardner, E. S., Jr. (2015). Forecasting intermittent inventory demands: Simple parametric methods vs. Bootstrapping. Journal of Business Research, 68(8), 1746–1752.
Syntetos, A. A., Babai, M. Z., Lengu, D., and Altay, N. (2011). Distributional assumptions for parametric forecasting of intermittent demand. In N. Altay and L. A. Litteral, editors, Service parts management, pages 31–52. Springer London.
Syntetos, A. A., and Boylan, J. E. (2001). On the bias of intermittent demand estimates. International Journal of Production Economics, 71, 457–466.
Syntetos, A. A., and Boylan, J. E. (2005). The accuracy of intermittent demand estimates. International Journal of Forecasting, 21(2), 303–314.
Syntetos, A. A., Nikolopoulos, K., and Boylan, J. E. (2010). Judging the judges through accuracy-implication metrics: The case of inventory forecasting. International Journal of Forecasting, 26(1), 134–143.
Taleb, N. N. (2014). Antifragile: Things that gain from disorder,Vol. 3. Random House Trade Paperbacks.
Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society, 54(8), 799–805.
Taylor, J. W. (2010). Exponentially weighted methods for forecasting intraday time series with multiple seasonal cycles. International Journal of Forecasting, 26(4), 627–646.
Taylor, J. W., and Snyder, R. D. (2012). Forecasting intraday time series with multiple seasonal cycles using parsimonious seasonal exponential smoothing. Omega, 40(6), 748–757.
Taylor, P. F., and Thomas, M. E. (1982). Short term forecasting: Horses for courses. Journal of the Operational Research Society, 33(8), 685–694.
Taylor, S. J., and Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1), 37–45.
Taylor, S., and Letham, B. (2021). Prophet: Automatic forecasting procedure. R package version 1.0.
Tetlock, P. E., and Gardner, D. (2015). Superforecasting. Crown Publishers.
Teunter, R., and Sani, B. (2009). On the bias of Croston’s forecasting method. European Journal of Operational Research, 194(1), 177–183.
The LaTeX community. (n.d.). The LaTeX Project.
Tim. (2017). How to know that your machine learning problem is hopeless? Cross Validated.
Timme, S. G., and Williams-Timme, C. (2003). The real cost of holding inventory. Supply Chain Management Review, 7(4), 30–37.
Tonetti, B. (2006). Tips for forecasting semi-new products. Foresight: The International Journal of Applied Forecasting, 4, 54–56.
US Census Bureau. (n.d.). X-13ARIMA-SEATS.
Vandeput, N. (2023). Demand forecasting: Best practices. Manning Publications.
Wang, X., Hyndman, R. J., Li, F., and Kang, Y. (2022). Forecast combinations: An over 50-year review.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686.
Xie, Y. (2022). bookdown: Authoring Books and Technical Documents with R Markdown. R package version 0.30.
Yardley, E., and Petropoulos, F. (2021). Beyond error measures to the utility and cost of the forecasts. Foresight: The International Journal of Applied Forecasting, (63), 36–45.